1. Simple deterministic queue model


Untitled

Untitled

Untitled

<aside> 📖 Queue occupancy $Q(t)$

$Q(t)=A(t)-D(t)$

</aside>

<aside> 📖 Queue delay $d(t)$

The time spent in the queue by a byte that arrived at time $t$, assuming the queue is served first-come-first-served (FCFS/FIFO).

</aside>

Untitled

2. Small packets reduce end to end delay


Breaking message into packets allows parallel transmission across all links, reducing end to end latency.

<aside> 📖 Send in one packet

$\text{End-to-end delay } \\t=\sum_i\left( \frac M {r_i} + \frac {l_i} c \right)$

</aside>

Untitled

<aside> 📖 Send in one packet

$\text{End-to-end delay } \\ t=\sum_i\left( \frac M {r_i} + \frac {l_i} c \right) + \left( \frac Mp-1 \right)\frac p{r_{min}}$

</aside>

Untitled

3. Statistical multiplexing


Statistical multiplexing lets us carry many flows efficiently on a single link.

<aside> 📖 Basic idea

The average rate of many flows tends to be convergent to a fixed rate.

</aside>

<aside> 📖 Features

Untitled

Untitled

Untitled

Untitled

$\text{Statistical Multiplexing Gain} = \frac {2C} R$