<aside> 📖 Queue occupancy $Q(t)$
$Q(t)=A(t)-D(t)$
</aside>
<aside> 📖 Queue delay $d(t)$
The time spent in the queue by a byte that arrived at time $t$, assuming the queue is served first-come-first-served (FCFS/FIFO).
</aside>
Breaking message into packets allows parallel transmission across all links, reducing end to end latency.
<aside> 📖 Send in one packet
$\text{End-to-end delay } \\t=\sum_i\left( \frac M {r_i} + \frac {l_i} c \right)$
</aside>
<aside> 📖 Send in one packet
$\text{End-to-end delay } \\ t=\sum_i\left( \frac M {r_i} + \frac {l_i} c \right) + \left( \frac Mp-1 \right)\frac p{r_{min}}$
</aside>
Statistical multiplexing lets us carry many flows efficiently on a single link.
<aside> 📖 Basic idea
The average rate of many flows tends to be convergent to a fixed rate.
</aside>
<aside> 📖 Features
$\text{Statistical Multiplexing Gain} = \frac {2C} R$