<aside> šŸ’” Key Points

I. Iterative Algorithm, Another View


$$ \begin{aligned} &\mathrm{X~is~a~fixed~point~of~function~F~if~\blue{X=F(X)}} \\ &\mathrm{The~iterative~algorithm~reaches~a~\orange{fixed~point}} \\ \end{aligned} $$

<aside> šŸ’” Fundamental problems to be solved

  1. Is the algorithm guaranteed to terminate or reach the fixed point, or does it always have a solution?
  2. If so, is there only one solution or only one fixed point? If more than one, is our solution the best one (most precise)?
  3. When will the algorithm reach the fixed point, or when can we get the solution? </aside>

II. Mathematical Knowledge


1. Partial Order

We define poset as a pair $(P, āŠ‘)$ where $āŠ‘$ is a binary relation that defines a partial ordering over P, and āŠ‘ has the following properties:

$$ \begin{aligned}

&\mathrm{(1)~āˆ€x āˆˆ P;~x āŠ‘ x~} &\textrm{(Reflexivity)} \\

&\mathrm{(2)~āˆ€x, y āˆˆ P;~x āŠ‘ y āˆ§ y āŠ‘ x āŸ¹ x = y~} &\textrm{(Antisymmetry)} \\

&\mathrm{(3)~āˆ€x, y, z āˆˆ P;~x āŠ‘ y āˆ§ y āŠ‘ z āŸ¹ x āŠ‘ z~} &\textrm{(Transitivity)} \\ \end{aligned} $$

2. Upper and Lower Bounds

Given a poset (P, āŠ‘) and its subset S that S āŠ† P, we say that

$$

\begin{aligned}&u\in P\mathrm{~is~an~\red{upper~bound}~of~S,~if~āˆ€xāˆˆS,xāŠ‘u.~} \\ &\mathrm{Similarly,~l~āˆˆ~P~is~an~\blue{lower~bound}~of~S,~if~āˆ€xāˆˆS,~lāŠ‘x.} \\ \end{aligned} $$